Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut.
نویسندگان
چکیده
The human gut is home to trillions of microbes, thousands of bacterial phylotypes, as well as hydrogen-consuming methanogenic archaea. Studies in gnotobiotic mice indicate that Methanobrevibacter smithii, the dominant archaeon in the human gut ecosystem, affects the specificity and efficiency of bacterial digestion of dietary polysaccharides, thereby influencing host calorie harvest and adiposity. Metagenomic studies of the gut microbial communities of genetically obese mice and their lean littermates have shown that the former contain an enhanced representation of genes involved in polysaccharide degradation, possess more archaea, and exhibit a greater capacity to promote adiposity when transplanted into germ-free recipients. These findings have led to the hypothesis that M. smithii may be a therapeutic target for reducing energy harvest in obese humans. To explore this possibility, we have sequenced its 1,853,160-bp genome and compared it to other human gut-associated M. smithii strains and other Archaea. We have also examined M. smithii's transcriptome and metabolome in gnotobiotic mice that do or do not harbor Bacteroides thetaiotaomicron, a prominent saccharolytic bacterial member of our gut microbiota. Our results indicate that M. smithii is well equipped to persist in the distal intestine through (i) production of surface glycans resembling those found in the gut mucosa, (ii) regulated expression of adhesin-like proteins, (iii) consumption of a variety of fermentation products produced by saccharolytic bacteria, and (iv) effective competition for nitrogenous nutrient pools. These findings provide a framework for designing strategies to change the representation and/or properties of M. smithii in the human gut microbiota.
منابع مشابه
Complete Genome Sequence of Methanobrevibacter smithii Strain KB11, Isolated from a Korean Fecal Sample
The archaeon Methanobrevibacter smithii is a major colonizer of the human gut. Methanobrevibacter smithii strain KB11 was newly isolated from a Korean fecal sample. Here, we present the complete genome sequence of strain KB11 and a brief comparison with that of M. smithii type strain ATCC 35061T.
متن کاملUnderstanding the interactions between bacteria in the human gut through metabolic modeling
The human gut microbiome plays an influential role in maintaining human health, and it is a potential target for prevention and treatment of disease. Genome-scale metabolic models (GEMs) can provide an increased understanding of the mechanisms behind the effects of diet, the genotype-phenotype relationship and microbial robustness. Here we reconstructed GEMs for three key species, (Bacteroides ...
متن کاملDraft Genome Sequence of Methanobrevibacter smithii Isolate WWM1085, Obtained from a Human Stool Sample
Methanobrevibacter smithii is a common inhabitant of the human gut. Here, we present a draft genome sequence of M. smithii isolate WWM1085, obtained from a human stool sample. This sequence will improve our understanding of the genetic diversity of this human-associated methanogen.
متن کاملImmunogenic properties of the human gut-associated archaeon Methanomassiliicoccus luminyensis and its susceptibility to antimicrobial peptides
The methanogenic archaeon Methanomassiliicoccus luminyensis strain B10T was isolated from human feces just a few years ago. Due to its remarkable metabolic properties, particularly the degradation of trimethylamines, this strain was supposed to be used as "Archaebiotic" during metabolic disorders of the human intestine. However, there is still no data published regarding adaptations to the natu...
متن کاملThe Intestinal Archaea Methanosphaera stadtmanae and Methanobrevibacter smithii Activate Human Dendritic Cells
The methanoarchaea Methanosphaera stadtmanae and Methanobrevibacter smithii are known to be part of the indigenous human gut microbiota. Although the immunomodulatory effects of bacterial gut commensals have been studied extensively in the last decade, the impact of methanoarchaea in human's health and disease was rarely examined. Consequently, we studied and report here on the effects of M. st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 25 شماره
صفحات -
تاریخ انتشار 2007